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1. INTRODUCTION

Let f:[—1, 11— R and let
Xpn = cO8((Rk — 1)=[2n), k=12,..n (1.1)

Now define R,, ,(f, x) as the unique polynomial of degree 4n — 1, or less,
such that

R4n—l(ﬁ xk.n) = f(xk.n), k - ls 2*"-’ ”5 (12)
and, forj = 1, 2, and 3,
RO (fixe) =0, k=12..n (1.3)

The nodes of interpolation defined by (1.1) are the zeros of the Chebyshev
polynomial

T,(x) == cos(n arc cos x), —1 < x <+ (1.9)

After the sequence of polynomials {R,, ,(f, x):n =1, 2,3,...} was first
introduced by Krylov and Steuermann [3] in 1922, it was further studied in
[1, 2, 4-6, 8].

In this paper we shall examine the difference | R,,_(f, x) — f(x)| more
closely than in [5]. In Section 2 new and old results are stated; Section 3
contains technicalities necessary for the proof of one of the new theorems
and Section 4 contains the proof of that theorem.
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2. CONVERGENCE THEOREMS

[n their study of the convergence properties of Ry, _,(f. x). Krylov and
Steuermann [3] stated the following result. (Unfortunately. their proof was
incorrect: a correct proof was later given by Laden [4].)

THeOREM |. If fe C([—1. L]) then
lim. Ry (/) —f -0

Here, as elsewhere in this paper. | - = denotes the uniform norm on
C([—1. 1].

The rate of convergence may be estimated in terms of w(f: t), the modulus
of continuity of £, which is defined by

w(fit):=sup{ f(x) —f(M):lx—y; <t —1="x 0 AL

If (1) is an arbitrary modulus of continuity, then we define the class C(£2)
of functions by

C&2y = feC([—11]): w(fit) < L) forallt - 0
The best result known about the rate of convergence is the following.

THEOREM 2 (T. M. Mills [5]). There are two positive constants A and B
such that, for each integer n ~: 2,
A& . L .
" Z Liry ~ sup! Ry, (f)—f :f=zC(Q)
B 13
: T Z _(l,-'r).

r=1

If we define Lip I = C(£2,), where £2,(¢) == t, then Theorem 2 implies

COROLLARY 1. IffeLip 1, then

Inn

Ruz—l( f) _f. = C

forn — 2,3, 4.,

where C is an absolute constant.

The main result of this paper is the following refinement of this corollary.
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THEOREM 3. If —1 <{ x < 1, then

sup{ Ry, 4(f.x) — f(x): feLipl]
3B gt — ey “:1" oG-, n—ow. (@21

Statement (2.1) highlights two facts concerning the polynomials R, _,(f. x).
Firstly. it is clear from (2.1) that if e Lip [ then

Ryna(f, X) — f(x)F = O ™) if =1
= O((Inn)in) if x=0;

that is, the error is much smaller near the end points than at the centre of the
interval. In this respect, it is possible to prove the more general pointwise
estimate

) B [ — e \
R0 — ol < 23 (=X Ly g
r=1
for —1 << x << +1, » =2 and fe C(£2). Here, B is an absolute constant.

As the proof of (2.2) is a mere combination of the techniques in [5, 7], we
shall omit it.

Secondly, the quantity 4§ in (2.1) is significant. One can preve a result
similar to Theorem 3 for the well-known Hermite-Fejér interpolation
polynomials based on the Chebyshev nodes (1.1). However, in this case one
obtains a factor T,(x)* (rather than the 7,(x)* in (2.1)) and the constant 2
(rather than the £ in (2.1)). Consequently the polynomial R, ,(f, x) gives a
better approximation (albeit only slightly better) than the classical Hermite—
Fejér interpolation polynomial determined by the same values of the function
J- Perhaps the significance of the constant # is best summed up in the following
corollary of Theorem 3.

COROLLARY 2.

. 4 1
sup {| Rypi(f) — f :fELlp]}:3—7T —I:Ii~ O(1'n), n-— 0,

3. FORMULAE
In this section we shall recall certain technical details which are necessary
for the proof of Theorem 3.

The polynomial Ry,_,(f, x) is given by

Runcal(: %) = 3. f0) Sil), G.1)
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where
SuN) - Fx) + Gulx) + Hyl),

[ o 32 T" X !
Filv) = (1= )* (1 — -"")(T:(—%T) )
. iz | . LECVNY
Gil) = S (= (1= -“—"k)(.\-—f%.’ ‘
N R EY S
i = 9 ()

and x; = x;._, is given by (L.1).
From (1.2}, (1.3), and the uniqueness of R,,_;(f, x) we have

Ry, a1l x) = Y Si(x) == 1.
k=1
For —1 < x << 1, let
4,(x) = supyi Ryn_s(f; ¥) — f(x);: fe Lip 1}
and

dAt)y="x—1, —1 <<r s+

Now, on the one hand, ¢, < Lip | and hence
An(v) = RJ"—I(¢1‘ , X) — ¢(“\) - Z | X — X! Sl(\)
k=1

On the other hand, for any f€ Lip 1, we have by (3.1) and (3.6)

n n

Ry (s X) — f(v) = i Z () — () Si(x)

=1

L
Fe=1

Therefore,

Ax) = 3 | x — x50 Sp(x).

k=1

We now estimate 4,,(x) by a series of lemmas.

4. ESTIMATES

N Y

(3.6)

S(x).

(3.7

In proving Theorem 3, we may assume that x = x, , . A == 1.2...., n, for
A,

otherwise (2.1) follows from (1.2). Define the index j by

— .,

minji x — x5 1k = 1, 2., n); if there are two such values of j, then choose



CERTAIN INTERPOLATION POLYNOMIALS 313

either one. Clearly j is a function of n and, provided ; x| == 1, both j and
n — j are unbounded functions of a.

LemmA 1. ch:lj_l | x — x| Si(x) = O(1/n).
If j = 1 or n then some of the terms in this sum will not appear.
Proof. Ifj— 1 <k <j—+1then

fx — x| Se(x) < |x —x, =cos —cos 6!
<18 —6 = 0(8,— 0, ) = 0/n).

The lemma now follows immediately.

LEMMA 2.

T v = xR = 01

k=1
and

n

Z | ¥ — xp Fi(x) = O(1/n).

k=j—-2

Proof. Using Eq. (8) in [5], we find, for 1 <k <j — 2,

|x — x B =0 (LK) o — k.

. H

and hence

Tl A = 00 Y i = 0(lin)
k=1

=1

The second part of the lemma may be proved in a similar manner.

LEMMA 3.

<
]
o

| X — xp i Hi(x) = O(1/n)

k=1

and

i | x — x5« Hy(x) = O(1l/n).

K=}

[S]

Proof. By using Eq. (10} in [S], one can prove Lemma 3 in the same way
that Lemma 2 was established.
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LEvva 4. [f —1 < x :=cos 8 <. “1, then

12 2

Z N — v Gelx) = i;#lcosJ ng -sinf-lnj — O(l;n) (4.1)
i=1 !

and

n

Y ox—x Gyy) = 4’(’,);;3 L costnf - sin 0 - In(n — j) — O(ljn).  (4.2)

L=cg-k2

Proof. Note thatif j = 1,2, n — 1, or i, then one of these sums will not
be required. We will prove (4.1) only, since the proof of (4.2) is very similar.
For | <k <j— 2, x; > x, and therefore

X — X Gr(v)
At =1 N by
et 73 Xp — X
At =1 L =X At -1 v XX —xp)
6t Tl) x,—x = 6nt T, X, — X
— M(x) — Ny (4.3)
say, and
Nu(xv) = O(n3).
If welet x = cos 8 (0 < 8 <. 7)and x,, = cos 0,., then
, At —1 sin? ¢ '
.‘[k(X) = —6/14— cost nf m . (44)

Therefore, by approximating the integral below by an appropriate Riemann
sum, we obtain

P

Z- M (x) = % - costnf - sin2 @
7T

k=1

~8 1 i |
: ['0 cosy —cosf (8 — y)sin @ dy + 0(1)]

4n* — |
6t

_§_

costnf - sin 8 - i- (0 — 8,)!
k=1
4% — | s . i-2 L | )
~ e nb -sin? 6 - 3 (6 — 6,)7" + O(l;n).  (4.5)

k=1
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If § = =, then (4.1) follows from (4.5). For § < = we have, for » sufficiently
large,

1
%

J

(0,4 — )" < i O— 601 <3 (61— 60"

k=1 = k=1

Therefore,

o

Y 1k Lz(%e,)— = 1.
=3

k k=1

and hence

=2

% Y (0 — 0)7 =Inj+ O). (4.6)
k=1
From (4.5) and (4.6) it follows that

nd-sin 6 -Inj — O(l/n). 4.7

i—2 4
Y MUx) = —
L=1

Estimate (4.1) now follows from (4.3), (4.4), and (4.7).

LEvMA 5. If —1 < x = cos 8 << 1, then

W) ~—(z > )ex— xl G

h=y-2

In n = o(i/n).

4 .
== ——cos*nf -sinf -
3o

Proof. From Lemma 4 we have

W (x) = 4’;;3 L costnf - sin 6 - In(jn — ) + O(1n). (4.8)
But
o =y =t L2 e (D oaum) (T 4 oqam),
and hence
In(j(n —j) = 2Inn + In 8 - In(z — 6) + O(1). (4.9)

We now observe that

4n* — 1
67n® 371!7

sinf-Inf =0(), 0<6<m, @.11)

+ O(n=3), (4.10)
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and
sin @ - In(= — 8) = O(l). 0~ 8L m 4.12)

The lemma now follows from (4.8) through (4.12).
Theorem 3 finally follows from (3.7) and Lemmas 1. 2, 3, and 5. Corollary 2
mentioned in Section 2 follows from Theorem 3 once we notice that

supy, Ry, () —f :felLlip l} = maxjd,(x): —1 < v < +—1;.
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